In den Untersuchungen wurde die mechanische Beschädigung eines Natrium-Ionen-Akkus durch einen sogenannten Nagelpenetrationstest simuliert. Dieser Test ist ein international anerkanntes Verfahren, um das Sicherheitsverhalten von Batterien zu bewerten. Dabei wird eine Zelle absichtlich mit einem Metallstift durchbohrt, um ein kritisches Schadensereignis auszulösen.
Ziel war es, herauszufinden, ob der Akku dabei – ähnlich wie bei Lithium-Ionen-Batterien – in eine gefährliche thermische Reaktion gerät, bei der sich die Zelle stark erhitzt und möglicherweise entzündet oder explodiert, und ob die eingebauten Sicherheitsmechanismen greifen. Aufgrund ihrer ressourcenschonenden Materialien und potenziellen Kostenvorteile gelten Natrium-Ionen-Batterien als vielversprechende Alternative zu Lithium-Ionen-Systemen.
Mittels Hochgeschwindigkeits-Röntgenaufnahmen in einer vom Fraunhofer Institut für Kurzzeitdynamik (EMI) speziell entwickelten Prüfkammer konnten die Forschenden an der European Synchrotron Radiation Facility in Grenoble erstmals die inneren Abläufe in Natrium-Ionen-Akkus während eines kritischen Ereignisses in Echtzeit sichtbar machen.
Untersucht wurden im direkten Vergleich auch zwei andere Batterietypen mit unterschiedlichen Sicherheitsmechanismen und chemischen Eigenschaften: eine klassische Lithium-Ionen-Batterie mit Nickel-Mangan-Kobalt-Kathode, die weit verbreitet in Elektrofahrzeugen und tragbaren Geräten ist, sowie eine Lithium-Eisenphosphat-Batterie. Dieser Akkutyp gilt als besonders sicher und wird häufig in stationären Speichern eingesetzt.
Die Ergebnisse zeigten deutliche Unterschiede im Verhalten: Die Lithium-Eisenphosphat-Batterie erwies sich als besonders stabil. Die Lithium-Ionen-Batterie mit Nickel-Mangan-Kobalt-Kathode reagierte kontrolliert – ihre Sicherheitsmechanismen funktionierten wie vorgesehen. Überraschend war das Verhalten der Natrium-Ionen-Batterie: Hier kam es zu einem nahezu explosionsartigen Verlauf. Ursache dafür war jedoch nicht die Zellchemie selbst, sondern ein Versagen des Entlüftungssystem der Zelle, das eigentlich dafür sorgen soll, dass der Überdruck abgebaut wird. Aufgrund des schnellen Druckanstiegs wurde das Entlüftungssystem jedoch von weiteren Komponenten der Sicherheitseinrichtungen verstopft, was zu der abrupten und heftigen Reaktion führte.
„Unsere Untersuchungen zeigen, dass Sicherheitsmechanismen nicht einfach von einer Batterietechnologie auf eine andere übertragen werden können“, erklärt Nils Böttcher, Leiter des Batterietestzentrums der BAM. „Gerade bei neuen Batterietypen wie Natrium-Ionen-Zellen müssen mechanische Komponenten wie Entlüftungssysteme gezielt angepasst und getestet werden. Unsere Ergebnisse stellen die grundsätzliche Sicherheit der Natrium-Ionen-Technologie nicht infrage, aber sie unterstreichen die Notwendigkeit, chemische Zusammensetzung und Sicherheitsdesign gemeinsam zu betrachten. Die BAM wirkt daher aktiv an der Entwicklung von Standards und Normen im Bereich der Sicherheit von Natrium-Ionen-Batterien mit.“
Originalpublikation:
https://www.sciencedirect.com/science/article/pii/S2666248525000228





Mit dem Absenden dieses Formulars stimmen Sie zu, dass das pv magazine Ihre Daten für die Veröffentlichung Ihres Kommentars verwendet.
Ihre persönlichen Daten werden nur zum Zwecke der Spam-Filterung an Dritte weitergegeben oder wenn dies für die technische Wartung der Website notwendig ist. Eine darüber hinausgehende Weitergabe an Dritte findet nicht statt, es sei denn, dies ist aufgrund anwendbarer Datenschutzbestimmungen gerechtfertigt oder ist die pv magazine gesetzlich dazu verpflichtet.
Sie können diese Einwilligung jederzeit mit Wirkung für die Zukunft widerrufen. In diesem Fall werden Ihre personenbezogenen Daten unverzüglich gelöscht. Andernfalls werden Ihre Daten gelöscht, wenn das pv magazine Ihre Anfrage bearbeitet oder der Zweck der Datenspeicherung erfüllt ist.
Weitere Informationen zum Datenschutz finden Sie in unserer Datenschutzerklärung.