Der Wasserstoff-Hype macht sie zu gefragten Rohstoffen für die Energiezukunft: Sogenannte Selten-Erd-Metalle, wie Scandium, Lanthan oder Cer. Denn in Festoxid-Elektrolysezellen für die Herstellung von Wasserstoff stecken rund 150 Kilogramm Selten-Erd-Metalle je 10 Megawatt-Modul. Laut aktuellen Ergebnissen des Teams der TU Bergakademie Freiberg lassen sich diese Metalle durch hydrometallurgische Verfahren aus den Elektroden der Elektrolyse-Zellen zurückgewinnen – und damit künftig anstelle von primären Rohstoffen weiterverwenden.
Im Labor haben die Forschenden ihre neue Recyclingmethode schon nachgewiesen: „Die jetzt veröffentlichten Ergebnisse wurden in einem kleinen Maßstab von 0,2 Gramm Zellenmaterial pro Versuch durchgeführt, wir arbeiten aber bereits daran die Ergebnisse in einen größeren Labormaßstab von derzeit bis zu 50 Gramm zu übertragen“, sagt Versuchsleiter Dr. Pit Völs.
Umweltschonende Aufbereitung der gefragten Metalle
Fokus des Teams lag auf hydrometallurgischen Recycling-Methoden, insbesondere auf der Laugung, bei der die Metalloxide in eine wässrige Lösung überführt werden. „Dafür trennen wir den Verbund aus Elektroden und Festelektrolyten zunächst mechanisch vom Stahl, der als Trennschicht und zur elektrischen Kontaktierung der Zellen eingesetzt wird“, erklärt Dr. Pit Völs. „Anschließend erfolgt die von uns untersuchte Laugung der Selten-Erd-Metalle aus den Elektroden mit Säuren.“
Im weiteren Projektverlauf sollen die Selten-Erd-Metalle dann mit umweltschonenden Chemikalien voneinander getrennt und recycelt werden. Zudem wird der entwickelte Recyclingansatz durch eine simulationsbasierte Ökobilanz bewertet.
Aus Alt mach Neu
Die Ergebnisse wurden im Forschungsprojekt GrInHy3.0 gemeinsam mit Partnern aus der Anwendung gewonnen. Gesamtziel ist eine neuartige Technologie für die Herstellung von Wasserstoff in Feststoffoxid-Elektrolysezellen. Der Projektleiter an der TU Bergakademie Freiberg, Professor Alexandros Charitos, erklärt: „Die Technologie wird es ermöglichen, die recycelten Metalle in den Materialkreislauf zurückzuführen. Damit sollen langfristig die Umweltauswirkungen des zukünftigen Abfallstroms, der bei der Wasserstoffherstellung entsteht, minimiert werden.“
An den Versuchsanlagen der Projektpartner, des Elektrolyseur-Herstellers Sunfire SE und des Stahlproduzenten Salzgitter Flachstahl GmbH, wird die Wasserstoffproduktionstechnologie in den kommenden drei Jahren unter realen Einsatzbedingungen validiert. Pro Stunde soll die Anlage künftig 14 Kilogramm Wasserstoff produzieren.
Das Forschungsprojekt GrInHy3.0 (Green Industrial Hydrogen) wird bis 2027 vom Bundesministerium für Wirtschaft und Energie (BMWE) gefördert.
Originalpublikation:
Journal of Sustainable Metallurgy https://doi.org/10.1007/s40831-025-01080-9





Mit dem Absenden dieses Formulars stimmen Sie zu, dass das pv magazine Ihre Daten für die Veröffentlichung Ihres Kommentars verwendet.
Ihre persönlichen Daten werden nur zum Zwecke der Spam-Filterung an Dritte weitergegeben oder wenn dies für die technische Wartung der Website notwendig ist. Eine darüber hinausgehende Weitergabe an Dritte findet nicht statt, es sei denn, dies ist aufgrund anwendbarer Datenschutzbestimmungen gerechtfertigt oder ist die pv magazine gesetzlich dazu verpflichtet.
Sie können diese Einwilligung jederzeit mit Wirkung für die Zukunft widerrufen. In diesem Fall werden Ihre personenbezogenen Daten unverzüglich gelöscht. Andernfalls werden Ihre Daten gelöscht, wenn das pv magazine Ihre Anfrage bearbeitet oder der Zweck der Datenspeicherung erfüllt ist.
Weitere Informationen zum Datenschutz finden Sie in unserer Datenschutzerklärung.